8 (800) 500-61-51

8 (495) 600-61-81


Какая все-таки методика планирования производства реализована в 1С:ERP 2.1 согласно классическим определениям?

Лисин Н.Г., Одиноков С. И.

Всем известно что в типовом решении 1С:ERP реализована революционная методика планирования производства. Но как она соотносится с классическими методиками MRP, APS, ТОС (ББВ)?

Правда ли, что 1С:ERP использует методы теории ограничений ТОС ( «Барабан-буфер-веревка«)?

Попробуем ответить на этот вопрос, не перегружая читателя тоннами выкладок, формул и прочих теоретических изысканий, как это принято в учебниках.

Рассматривать будем только межцеховое планирование (так называемый уровень «глобального диспетчера»), внутрицеховое планирование и управление партиями запуска-выпуска (маршрутными листами) в этой статье не затрагиваем.

Прежде чем приступить к обсуждению этого вопроса, вкратце напомним, в чем суть, преимущества и возможная область использования методов расчета сквозных межцеховых графиков производства MRP/CRP, APS, ББВ (ТОС, DBR).

MRP/CRP/RCCP (Material Requirements Planning, Capacity Requirements Planning, Rough-Cut Capacity Planning)

График межцеховых передач изделий рассчитывается от плановой даты выпуска изделия по заказу назад во времени (справа -> налево). При этом программа исходит из структуры дерева продукции (дерево конечной продукции разворачивается назад во времени простым разузлованием) и суммарного времени выполнения всех операций над полуфабрикатами (компонентами) в цехах.

На каждый интервал времени (день, смена) программа записывает, какие производственные мощности нужны для выполнения каждого заказа (в этом состоит методика CRP). Потребность фиксируется «постфактум», вне зависимости от доступности в процессе планирования — другими словами,   есть ли в смене (дне, неделе) доступное время работы оборудования с учетом ремонтов и занятости на других заказах.

Можно сделать так, что записываться будут потребности во времени работы только тех мощностей, которые признаны логистами потенциально узкими местами. Это позволит не перегружать систему информацией (методика RCCP).

MRP-CRP2

Также в системе CRP/RCCP содержится информация о доступном фонде времени работы производственных мощностей в каждом интервале, а именно:

  • время работы видов рабочих центров (ВРЦ, групп однотипного оборудования) с учетом остановки на ремонты,
  • и время работы трудовых ресурсов (работников) по цехам c учетом отпусков и больничных.

После того как все заказы распланированы по межцеховым перемещениям,  логист смотрит отчет — сопоставление требуемой планом  потребности во времени работы мощностей (поинтервально) и доступного фонда времени работы мощностей.

Дефициты времени работы мощностей и трудовых ресурсов выявляются поинтервально:

Дефицит мощности на интервал  =  Суммарная потребность во времени работы мощности по всем заказам на интервал — Доступный фонд времени работы мощности на интервал

  • Положительное значениедефицит 
  • Отрицательное значение — профицит (избыток мощности).

Если есть дефицит хотя бы в одном интервале, то условно считается, что вся совокупность заказов неисполнима. В таком случае производят  соответствующие манипуляции с датами выпуска заказов (смещение в будущее для разгрузки производства)  и их дальнейшее перепланирование с тем, чтобы сбалансировать загрузку и устранить дефициты.

CRP1

Таким образом, методика MRP/CRP/RCCP позволяет увидеть дефициты мощностей «постфактум» после процедуры планирования,  но не предлагает выполнить распределение заказов по оси времени, чтобы  эти дефициты устранить. Такая разводка заказов по датам делается логистами вручную на основании их опыта и приоритетов заказов. Далее все заказы перепланируются и снова проверяются на наличие дефицитов.

Таких итераций может быть несколько; они осуществляются до тех пор, пока график производства не станет хотя бы приблизительно сбалансирован по мощностям (т.е. не будут устранены все дефициты).

Задача расчета возможной даты выполнения нового заказа решается крайне приблизительно — график и потребные мощности нового заказа накладываются на уже рассчитанную поинтервально загрузку мощностей по имеющимся заказам. Затем логисты проверяют,  какая новая загрузка мощностей получилась, и не вышла ли она за пределы доступного фонда мощностей:

  • если нет, дата заказа признается исполнимой,
  • если да, логист подбирает такую дату выпуска по новому заказу, чтобы суммарный график производства был исполним; если заказ важный, то другой заказ можно вручную отодвинуть во времени вперед, тем самым освободив место для нового заказа.

Такая схема не вызывает особых проблем, если, исходя из принятых заказов клиентов, производство по мощностям загружено не более, чем на 70%. Иначе говоря, «главное продать, а произвести всегда сможем». Неточность планирования сглаживается оставшимися 30%-ным доступным временем работы мощностей.

Задачи оптимизации загрузки, минимизации НЗП и переналадок решают локальные цеховые диспетчера «на местах» согласно своему чутью и опыту — для этого у них есть пространство для маневра, так как график производства «дырявый» и он не загружает на 100% мощности в горизонте планирования.

Это нормальная ситуация на предприятиях, где ограничением объема продаж за любой период является рынок, а не производство, что влечет за собой постоянную недозагрузку производства.

Пример такой системы — Модуль планирования и диспетчеризации для 1С:УПП от ИТРП. Также в таком режиме может работать 1С:ERP (режим спецификаций «Не рассчитывать загрузку РЦ»).

Задача расчета возможной даты исполнения заказа на недозагруженном производстве решается очень приблизительно, но это не вызывает особых проблем, так как по причине недозагрузки производства расчет, как правило, показывает неполную загрузку мощностей даже с учетом нового заказа. Оценка даты выполнения строится прежде всего на:

  • доступности материалов к дате их потребления и
  • длительности производства продукта по всем технологическим этапам которые надо выполнить для данного заказа.

Например, если агрегат собирается не менее 10 дней, то новые заказы принимаются не менее чем за 10 дней (при наличии всех материалов). При монопроизводстве (один вид продукции) можно применять еще более простой критерий — например производство может выпускать не более 1 тонны пельменей в сутки…

ATP-MRP

Другое дело, если ограничением продаж за период является производство, либо мощности производства примерно соответствуют среднему объему заказов клиентов за период. Сразу надо сказать, что такая ситуация, возможно, говорит о несбалансированности предприятия с рынком, а также наличии серьезных проблем с точным планированием производства с максимально плотной его загрузкой, что позволяет  выполнять как можно большее количество заказов за период.

При сезонном характере спроса планирование может быть выстроено неоптимально: в сезон низкого спроса производство недогружено, а в сезон высокого спроса — аврал.

Поскольку в таких ситуациях выполняется планирование с максимально плотной загрузкой производства, такое планирование рискованно, так как всегда есть вероятность не выполнить заказ в срок из-за, например, поломки оборудования или брака. Сложно оптимизировать производство, укрупнять партии и минимизировать переналадки, возможна «нервозность», авральность производства. Интересы производственников (оптимизировать производство и  работать ритмично) начинают противоречить интересам коммерсантов (продать как можно больше и быстро выполнять срочные заказы, в том числе на новые виды продукции).

Для полноты изложения отметим, что при более пристальном рассмотрении вопроса методология  CRP распадается на два подраздела:

  • RCCP (Rough-Cut Capacity Planning). Предварительное планирование производственных мощностей. Процедура  быстрой проверки дефицитов нескольких ключевых мощностей (потенциально «узких» мест) . Смысл выделения этой процедуры только в высокой ее скорости, так как проверяются  не все мощности, а очень ограниченный их перечень.
  • FCRP (Finite Capacity Resource Planning). Окончательное планирование производственных мощностей. Процедура проверки дефицитов всех производственных мощностей.

APS (Advanced Planning and Scheduling)

В ситуации, когда потенциальным ограничением продаж продукции является производство, решением (достаточно относительным) является метод APS.

Главное отличие APS  от MRP/CRP заключается в следующем: при расчете графика межцеховых передач полуфабрикатов программа опускается до технологических операций и планирует операции на конкретные единицы оборудования, захватывая время их работы. Продвинутые APS-системы захватывают также время работы персонала и прочие ограничения производства (время работы оснастки и т.д.).

Самый первый и приоритетный заказ захватывает время работы мощностей из доступного фонда времени работы мощностей. Следующий заказ захватывает то, что осталось от первого и так далее, пока не будут распланированы все заказы.

При поступлении нового заказа его можно поставить в конец очереди —он захватит те мощности на временной оси, которые остались от всех имеющихся заказов. А можно его «втиснуть» в середину очереди — он опять же захватит те мощности на временной оси, которые остались от всех имеющихся заказов, стоящих в очереди перед ним, но не будет учитывать мощности заказов, стоящих в очереди после него. В этом случае, разумеется, требуется перепланирование всех заказов, стоящих в очереди позже.

Чтобы захватить время работы мощности, программа анализирует временную ось и ищет свободное время работы мощностей, оставшееся после плановых ремонтов и других, более приоритетных заказов. При этом программа старается соблюдать критерии оптимизации производства — она минимизирует время переналадок, размер НЗП, максимизирует партии передаваемых изделий, снижает себестоимость производства и т. д.

Можно сказать, что APS-система строит сквозное (по всем цехам) пооперационное расписание работы оборудования для выполнения заказа на уровне глобального диспетчера, снимая эту задачу с цеховых диспетчеров.

APSграфик

Планирование может производиться:

  • Справа-налево (операции назначаются на временную ось как можно позже, туда, где есть свободное время мощностей). Минусы: срыв графика операций подразделением неминуемо приводит к просрочке даты выполнения заказа. В результате возникает необходимость перепланирования и, как следствие, смещение дат выпуска по заказам, либо сверхурочная/авральная работа. Нервозность графика, перенасыщенность дедлайнами,  высокая «напряженность» производственных партий.
  • Слева — направо (операции назначаются на временную ось как можно раньше, туда, где есть свободное время мощностей, но не раньше даты начала производства, отмеченной в заказе). Минусы: потребности в материалах наступают раньше, чем это реально нужно для выполнения заказа. В целом, это более оптимальный режим, особенно при недозагруженном производстве и неограниченном сроке хранения продукции. Лучше начать выполнять заказ заранее, чтобы гарантированно успеть к сроку.

APS222

Как показывает схема, при планировании «как можно раньше» для выполнения заказа остается запас времени, равный разнице между датой выпуска, желаемой клиентом, и датой выпуска, рассчитанной предприятием.

Если нужно посчитать минимальную дату исполнения заказа, то наиболее эффективно эта задача решается в режиме «слева-направо». Заказ вставляется в очередь заказов (очередь на захват мощностей) и захватывает мощности, которые остались от заказов, стоящих в очереди перед ним. Поскольку этапы производства распределяются по доступным временным интервалам слева направо, программа определяет:

  • расчетную дату запуска заказа в производство (дата начала выполнения самого первого этапа в структуре продукта) — дату, на которую есть свободная мощность для выполнения самой первой операции;
  • расчетную дату выпуска по заказу — дату, которая получилась в результате последовательного захвата мощностей операциями заказа слева-направо, начиная с первой операции.

Проще говоря, при поступлении нового заказа программа старается расположить его на временной оси как можно левее — там, где есть свободное место работы оборудования (с учетом уже распланированных более приоритетных заказов) для самой первой операции по заказу. Место найдется в любом случае — это и будет дата запуска заказа. Затем ищется временная точка (свободная мощность)  для следующей операции и так далее. В конце концов, программа «выходит» на последнюю операцию и также планирует ее на доступное время оборудования – это будет дата выпуска по заказу.

Примеры таких систем — решения <<Оптипром>> и <<ИТРП:Процессное производство 8>>.

Казалось бы, чего еще желать? Такая система представляется идеальной. График загружает производство на максимальную мощность,  производство согласно графику работает ритмично (без авралов и простоев), реализация за период выводится на максимально возможный объем, клиенты довольны — в результате точного планирования заказы выполняются в срок, моментально определяются возможные сроки выполнения заказа.

Однако не все так просто. В теории — красиво. А на практике возможны проблемы:

  • В результате распределения операций заказов по времени работы оборудования может (к примеру)  наблюдаться следующая картина:  первый заказ с выпуском на 10-е число номенклатуры Х 10 шт. распределился на три дня с запуском 7-го, а второй заказ с выпуском на 20 -е число той же номенклатуры и количества запускать надо уже завтра — он распылился на двадцать дней. Диспетчеру цеха такой график может показаться странным. Зачем запускать 2-го числа, если сдавать 20-го, а цикл производства длится три дня? Такой график может получиться из-за оптимизации переналадок, а также по другим не вполне понятным диспетчеру причинам.
    • Налицо неравномерное сложно  пересекающееся распределение операций заказов разных приоритетов во времени, не всегда очевидное диспетчерам, а значит, существует опасность ухода диспетчеров от этого графика. Многие, вероятно, потребуют у глобального диспетчера просто дать график сдачи изделий по заказам, «а какие операции когда запускать  — с этим мы сами разберемся». Все-таки на уровне глобального диспетчера (межцеховой график) сложно учесть все внутрицеховые нюансы..
  • Срыв исполнения в срок любой плановой операции, брак, задержка в поставке материала, болезнь работника и тому подобное приводит к каскадной невыполнимости всех последующих операций, максимально плотно распланированных во времени (именно плотно, а иначе зачем APS?). В таких ситуациях необходимо немедленно перепланировать график, так как он стал неактуальным — весь график, по всем цехам и заказам.
    • Перепланирование может выполняться с разной периодичностью, например, в конце каждой смены или суток. В результате, график может перестроиться до неузнаваемости. А перестройка графика — это не только изменение требований к ближайшим переналадкам и потребности в оснастке (что «бьет» по цехам и вспомогательному производству), но и изменение расчетных дат выпуска по заказам (что «бьет» по клиентам, с которыми приходиться договариваться на более поздние сроки).  Все это порождает нервозность и высокую напряженность как на самом производстве, так и в отделе продаж.
  • APS требует точности нормативных данных, в том числе учета множества параметров производства. Данных по этим параметрам у технологов может не оказаться —  зачастую они не формализованы и находятся в головах у мастеров цехов (локальных диспетчеров). Ели нюансы не учтены, график будет неисполним. Оцифровка и структуризация таких нормативных данных (пооперационных маршрутных карт) со всеми параметрами, необходимыми для расчета производственных расписаний, а также поддержание актуальности  этой информации для среднего машиностроительного, приборостроительного предприятия является задачей невероятной организационной сложности!
  • APS —  система абсолютно детерминирующая, формализующая всю работу цеха «сверху» с максимальной детальностью (вплоть до операций) с уровня глобального диспетчера (ПДО). Локальные диспетчеры исполняют график операций, спущенный сверху. Именно график операций, а не график сдачи изделий. В этом графике операций не учитываются производственные параметры, которые неизвестны программе-планировщику, но которые напрямую влияют на расчет исполнимого графика. Примеры (разумеется, это лишь малая часть):
  • ПриказНачальника
    • Токарь Иванов сегодня не в настроении и ему не нужно доверять ответственную деталь, а токаря Козлова нельзя подпускать к старому станку — у него повышенная конусность и он запорет заготовку.  
    • На одном из наших проектов APS — система, как оказалось, не умеет соединять станки в производственную линию как один поточный РЦ (таково требование технологии), с удалением этих станков из фонда доступной мощности. Описать эту совокупность РЦ как один РЦ тоже нельзя — для других изделий они планируются отдельно…
    • Проблема с сопряженными деталями: нельзя сверлить крышку пока не просверлен корпус, хотя крышка и корпус находятся в разных ветках дерева продукции и соединяются лишь на сборке.
    • Сложности возникают с передачей по кооперации на сторону или в другие цеха при нехватке мощностей.
    • Печь может работать не только в синхронном, но и в асинхронном режиме. Она выводится на заданную температуру, а дальше заготовки закладываются и вынимаются не синхронно (одной загрузочной партией), а в разное время, согласно длительности термообработки каждой заготовки.
    • Такие ситуации опытный локальный диспетчер разруливает без проблем, тогда как программа на это не способна. Для этого требуется искусственный интеллект. Вот почему системы, которые дают диспетчеру ориентировочный график сдачи изделий и оставляют простор для творчества при планировании операций внутри цеха, более устойчивы и менее нервозны. APS-система во многом лишает диспетчера цеха возможности маневра и самостоятельности в учете нюансов.
  • APS-системы основаны на сложнейшей математике – в частности,  генетических алгоритмах. Самые простые APS-системы используют эвристические  жадные алгоритмы. В любом случае, воспроизвести (просчитать) результаты планирования вручную невозможно, как невозможно объяснить  опытному логисту, почему программа распланировала именно так, хотя есть другой, более оптимальный план. Действительно, никаких гарантий, что  программа найдет в тысяче вариантов плана самый оптимальный, нет.
  • И наконец, посчитаем сколько плановых операций APS-система должна планировать на месяц вперед.
    • Например, 1000 заказов на готовую продукцию в месяц, по каждому — 1000 операций по всем цехам. Получаем миллион операций, которые необходимо рассчитывать, оптимизировать и записывать в базу данных, скорее всего, ежедневно, а значит на процедуру планирования при трехсменном режиме работы отводится полчаса — час.

Итак,  основными недостатками APS-систем являются:

  • Невозможность учесть все производственные параметры для точного расчета графика. Если для MRP неточный график — это нормально, то для APS — губительно, так как подразумевает неисполнимость графика и его постоянное перепланирование. А это нервозность и неритмичность производства.
  • Организационная сложность в создании, оцифровке нормативной системы (спецификаций, маршрутных карт). Приведение того что есть на предприятии, к формату который требует APS, непрерывная поддержка актуальности этих данных.
  • Высокая требовательность к быстродействию и объемам хранилищ данных.

Если эти недостатки не проявляются на конкретном производстве, то APS-система является абсолютной рекомендацией к использованию.

В последнее время много говорится о том, как сложно разработать универсальную APS-систему для всех отраслей. Наиболее успешно работают узкоспециализированные APS-системы, «заточенные» под конкретные отрасли и учитывающие все особенности конкретных производств.

 

MES (Manufacturing Execution System)

Для полноты картины отметим еще MES-системы. Провести четкую грань между APS и MES-системой не всегда просто. Этой теме посвящено множество исследований.

Например, APS-систему можно условно считать MES-системой, если все предприятие состоит из одного цеха, а перепланирование цеха возможно по итогам выполнения каждой операции с тем, чтобы получить точный измененный план операций после выполнения каждой операции.
.

MES

Характерными особенностями MES-систем можно считать:

  • Планирование операций на уровне локального диспетчера только внутри цеха. В качестве исходных данных используется  график  сдачи изделий цехом.
  • Перепланирование графика в автоматическом режиме (например каждые 15 минут) по итогам выполнения операций предыдущей версии графика. В любом случае перепланирование выполняется с периодичностью, равной средней длительности операций. В результате, диспетчер (и рабочие на рабочих центрах) видят непрерывно актуализируемый график операций по рабочим центрам с учетом того, чем сейчас заняты РЦ.
  • Точный расчет расписаний работы оборудования в краткосрочном горизонте (несколько смен) с учетом всех производственных параметров. То есть получается реально исполнимый график, не требующий корректировки диспетчером из-за неучтенных нюансов. При большом количестве операций диспетчер просто не сможет просматривать и корректировать все плановые операции каждые 15 минут.
  • Прямая связь с оборудованием — передача сигналов с оборудования в MES-систему о текущих режимах работы оборудования, фактическом старте и завершении операций. Это важно так как требования к оперативности и точности ввода фактических данных очень высоки.

MES-системы наиболее эффективны, когда являются узкоспециализированными (это позволяет учесть в системе специфические производственные параметры), встроены в конкретное производственное оборудование и поставляются с ним.

ТОС, ББВ/DBR (Теория ограничений систем, «Барабан-буфер-веревка», «Drum, buffer, rope»)

Данная методика является поистине революционной и не сразу была признана корифеями. Создана всемирно известным исследователем Элияху Голдраттом.

ББВ1

Данная гениальная методика бросает вызов традиционным методикам и призвана не только устранить недостатки APS и MRP, но и объединить их достоинства.

ББВ основана на следующих очевидных предпосылках:

  1. Производство чаще всего не является полностью сбалансированным. Пропускную способность производства для каждого вида продукции ограничивает лишь один вид производственного ресурса (мощности). Например некий уникальный дорогой станок. Исключение — поточные и непрерывные  производства, в которых каждый РЦ потока полностью сбалансирован с другими РЦ. Но это не случай ТОС, и  даже не случай когда требуется детальное планирование производства.
  2. Нет смысла детально планировать каждый производственный  участок. Достаточно точно распланировать участок с узким производственным ресурсом — «барабаном«. Это будет основной такт производства. График работы барабана соблюдается неукоснительно. Он должен быть загружен непрерывно с минимумом переналадок. Это значит, что производство загружено максимально.
    • Очевидно, что остановка барабана — эта остановка деятельности всего предприятия. Рассчитать дату выполнения заказа очень просто: для этого нужно назначить обработку заказа на один РЦ — барабан — захватив время его работы. Расписание обработки заказов на один рабочий центр можно составить в Excel.
  3. Все остальные участки автоматически будут подлаживаться под основной такт барабана, так как их пропускная способность выше, чем требуется для обеспечения такта работы барабана. Поэтому график работы участков не нужен. Достаточно запускать исходные материалы в начальные участки за некоторое время до поступления на барабан и требовать с участков немедленно обрабатывать и отправлять изделия дальше соответствующим участкам-получателям, выполняющим следующие операции.
    • Принцип запуска материалов в производство до выхода изделий на барабан — это «веревка». Веревка «дергает» материалы со склада в соответствии с тактом барабана, причем только в том количестве, которое нужно  для барабана. Ни в коем случае нельзя выдавать материалов больше, чем требуется барабану  — в противном случае участки начнут увеличивать партии с целью оптимизировать производство, и их пропускная способность станет меньше, чем у барабана. Иными словами, барабан перестанет быть узким местом.
  4. График должен быть таким, чтобы перед барабаном всегда находилась непустая очередь изделий. Это обеспечит непрерывность его загрузки. Чтобы очередь была непустой, исходные материалы надо запускать в производство гораздо раньше, чем того требует длительность обработки до барабана. Например, время такого опережения запуска материалов может быть в 3 раза больше длительности обработки до барабана. Такое время опережения называется временным  «буфером«.
  5. Нет смысла контролировать своевременность сдачи всех изделий цехами. Достаточно контролировать, какие изделия вышли из «зеленой зоны» — т. е. не поступили в очередь к барабану своевременно согласно производственному циклу. Такие изделия/заказы требуют контроля и вмешательства диспетчера.
    • Используется принцип светофора. Если заказ в «зеленой зоне», не обращаем на него внимания. Если заказ в «желтой зоне» — т. е. прошло уже 1/3 буфера, но не более 2/3 буфера, а заказ так и не  вышел к барабану — начинаем разбираться, почему возникла задержка. Если заказ в «красной зоне» — т. е. прошло более 2/3 буфера, а заказ так и не вышел к барабану — срочно вмешиваемся, иначе расписание работы барабана нарушится. Разумеется, за счет других заказов в очереди барабан, скорее всего, не остановится, что говорит о большой устойчивости системы.

ББВ3

Между барабаном и выпуском готовой продукции могут быть выпуски промежуточных полуфабрикатов — в этом случае при планировании необходимо учитывать «завершающий буфер». Другими словами, от обработки на барабане до выпуска готового изделия проходит некоторое фиксированное время, которое учитывается (добавляется) при планировании. Например, если продукцию по заказу надо выпустить 10-го числа, а завершающий буфер — 3 дня, то работа барабана для обработки заказа планируется на 7-е число.

ББВ2

К сожалению, ББВ тоже не является абсолютно универсальной методикой.

ББВ отлично работает, если в производстве есть ярко выраженный узкий рабочий центр для каждого вида продукции, который не мигрирует при изменении ассортимента выпускаемой продукции. Если узкое место сложно «поймать» или оно мигрирует, то с ББВ будут проблемы.

Итак, мы рассмотрели 3 основные методики планирования. Каждая из них имеет свои плюсы и минусы. У каждой есть свои ограничения. Возможно ли найти универсальную методику, своего рода «золотую середину», обладающую плюсами всех остальных методик, но лишенную их недостатков?

Решаема ли эта задача? Не сродни ли она попыткам средневековых алхимиков превратить свинец в золото или изобрести вечный двигатель?

Поиски «философского камня» в 1С:ERP…

Алгоритм планирования производства 1C:ERP

Мы не будем описывать все нюансы. Опишем лишь основные моменты, составляющие суть алгоритма межцехового планирования производства в 1С:ERP.

Для каждого производственного подразделения временная ось разбивается на равные интервалы. Например, сутки или недели — это самые востребованные варианты. Причем для каждого подразделения интервал настраивается индивидуально.

В заказе на производство задаются желаемые дата запуска и выпуска:

  • Раньше желаемой даты запуска (реквизит «дата начать не ранее») программе запрещено планировать выполнение графика по заказу.
  • Выпуск изделия должен быть запланирован не позже желаемой даты выпуска. По сути, это дата, желаемая клиентом.

В каждом подразделении описываются виды рабочих центров (ВРЦ), имеющиеся в  подразделении, а также доступный суммарный плановый фонд времени работы ВРЦ с учетом ремонтов.

ВРЦ состоит из отдельных РЦ, но при планировании учитывается суммарный фонд времени ВРЦ.

В спецификации на этап производства указывается:

  • в каком подразделении выполняется этап,
  • рабочее время каких ВРЦ этого подразделения необходимо захватить при выполнении спецификации этапа.

В спецификации этапа следует указывать только потенциально узкие места (ВРЦ) подразделения. В этом случае график межцеховых передач по заказу будет строиться согласно захвату времени работы этих ВРЦ, без учета тех ВРЦ, которые не являются узкими местами.

Методика планирования слева – направо или справа – налево определяется в отдельно взятом заказе на производство. Исходя из этого параметра, уже можно отнести 1С: ERP к системам APS класса, т.к. алгоритм MRP подразумевает расчет графика производства только справа — налево

Программа выполняет последовательное планирование заказов по очереди заказов. Очередь заказов определяется приоритетом заказа, в рамках заказов с одним приоритетом очередь определяется в соответствии с датой ввода документа. Очередь заказов рассчитывается в рамках одного подразделения – диспетчера.

В соответствии с параметром «Размещение выпуска» система осуществляет поиск интервала планирования для размещения этапов производства левее даты потребности назад во времени или правее даты «Начать не ранее» вперед по времени, которая будет являться точкой отсчета.

После этого планирование осуществляется вправо или влево в соответствии с размещением выпуска до полного размещения заказа в производстве. При этом этапы захватывают время работы ВРЦ, указанных в его спецификации, и делает это захваченное время недоступным для всех последующих менее приоритетных заказов.

читать далее>>>



Нет времени читать? Нажмите на кнопку и сохраните у себя статью:

Проекты и решения на 1С для производства

1С:ERP, 1C:УПП, 1С:MES, 1C:ТОИР

Заказать демонстрацию

Предсказуемое внедрение.
Гарантированный результат.
Выверенные технологии внедрения.

Подробнее

Ближайшие вебинары, курсы, конференции

Получайте расписание новых мероприятий на свою электронную почту

Подписаться

Обсудите вашу задачу с нашим специалистом

Сможем ли мы решить именно вашу задачу? Сколько это будет стоить? Сколько времени займет проект?
Оставить заявку
youtube.complus.google.comvk.com
-->